Generative Manifold Learning for the Exploration of Partially Labeled Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Manifold Learning for the Exploration of Partially Labeled Data

In many real-world application problems, the availability of data labels for supervised learning is rather limited and incompletely labeled datasets are commonplace in some of the currently most active areas of research. A manifold learning model, namely Generative Topographic Mapping (GTM), is the basis of the methods developed in the thesis reported in this paper. A variant of GTM that uses a...

متن کامل

Learning from partially labeled data

The Problem: Learning from data with both labeled training points (x,y pairs) and unlabeled training points (x alone). For the labeled points, supervised learning techniques apply, but they cannot take advantage of the unlabeled points. On the other hand, unsupervised techniques can model the unlabeled data distribution, but do not exploit the labels. Thus, this task falls between traditional s...

متن کامل

Learning from text and images: generative and discriminative models for partially labeled data

Image annotation is a challenging task of assigning keywords to an image given the content of an image. It has a variety of applications in multi-media data-mining and computer vision. Traditional machine learning approaches to image annotation require large amounts of labeled data. This requirement is often unrealistic, as obtaining labeled data is, in general, expensive and time consuming. Ho...

متن کامل

Learning Α-integrationwith Partially-labeled Data

Sensory data integration is an important task in human brain for multimodal processing as well as in machine learning for multisensor processing. α-integration was proposed by Amari as a principled way of blending multiple positive measures (e.g., stochastic models in the form of probability distributions), providing an optimal integration in the sense of minimizing the α-divergence. It also en...

متن کامل

Learning aspect models with partially labeled data

0167-8655/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.patrec.2010.09.004 ⇑ Corresponding author. Address: National Centre f okritos”, Athens, Greece. Tel.: +302106503204; fax: + E-mail address: [email protected] (A. Kri In this paper, we address the problem of learning aspect models with partially labeled data for the task of document categorization. The motivation of this w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computación y Sistemas

سال: 2013

ISSN: 1405-5546

DOI: 10.13053/cys-17-4-2013-14